Cx26 deafness: mutation analysis and clinical variability.

نویسندگان

  • A Murgia
  • E Orzan
  • R Polli
  • M Martella
  • C Vinanzi
  • E Leonardi
  • E Arslan
  • F Zacchello
چکیده

Mutations in the gap junction protein connexin 26 (Cx26) gene (GJB2) seem to account for many cases of congenital sensorineural hearing impairment, the reported prevalence being 34-50% in autosomal recessive cases and 10-37% in sporadic cases. The hearing impairment in these patients has been described as severe or profound. We have studied 53 unrelated subjects with congenital non-syndromic sensorineural hearing impairment in order to evaluate the prevalence and type of Cx26 mutations and establish better genotype-phenotype correlation. Mutations in the Cx26 gene were found in 53% of the subjects tested, 35.3% of the autosomal recessive and 60% of the sporadic cases in our series. Three new mutations were identified. The hearing deficit varied from mild to profound even in 35delG homozygotes within the same family. No evidence of progression of the impairment was found. Alterations of the Cx26 gene account for a large proportion of cases of congenital non-syndromic sensorineural deafness, so it seems appropriate to extend the molecular analysis even to subjects with mild or moderate prelingual hearing impairment of unknown cause.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mutation Analysis of Connexin 26 Gene and Del (GJB6-D13S1830) in Patients with Hereditary Deafness from Two Provinces in Iran

Mutations in the connexin 26 (Cx26) gene at the DFNB1 locus on chromosome 13q12 are associated with autosomal recessive non-syndromic hearing loss (ARNSHL). There are many known mutations in this gene that cause hearing loss. A single frameshift, at position 35 (35delG) accounts for 50% of mutations in the Caucasian population with carrier frequencies of 1.5-2.5%. In this study we investigated ...

متن کامل

The Cx26-G45E mutation displays increased hemichannel activity in a mouse model of the lethal form of keratitis-ichthyosis-deafness syndrome

Mutations in the GJB2 gene (Cx26) cause deafness in humans. Most are loss-of-function mutations and cause nonsyndromic deafness. Some mutations produce a gain of function and cause syndromic deafness associated with skin disorders, such as keratitis-ichthyosis-deafness syndrome (KIDS). Cx26-G45E is a lethal mutation linked to KIDS that forms constitutively active connexin hemichannels. The path...

متن کامل

Assembly of the cochlear gap junction macromolecular complex requires connexin 26.

Hereditary deafness affects approximately 1 in 2,000 children. Mutations in the gene encoding the cochlear gap junction protein connexin 26 (CX26) cause prelingual, nonsyndromic deafness and are responsible for as many as 50% of hereditary deafness cases in certain populations. Connexin-associated deafness is thought to be the result of defective development of auditory sensory epithelium due t...

متن کامل

The human Cx26-D50A and Cx26-A88V mutations causing keratitis-ichthyosis-deafness syndrome display increased hemichannel activity.

Mutations in the human gene encoding connexin 26 (Cx26 or GJB2) cause either nonsyndromic deafness or syndromic deafness associated with skin diseases. That distinct clinical disorders can be caused by different mutations within the same gene suggests that different channel activities influence the ear and skin. Here we use three different expression systems to examine the functional characteri...

متن کامل

Hypothesis of K+-Recycling Defect Is Not a Primary Deafness Mechanism for Cx26 (GJB2) Deficiency

K+-recycling defect is a long-standing hypothesis for deafness mechanism of Connexin26 (Cx26, GJB2) mutations, which cause the most common hereditary deafness and are responsible for >50% of nonsyndromic hearing loss. The hypothesis states that Cx26 deficiency may disrupt inner ear gap junctions and compromise sinking and recycling of expelled K+ ions after hair cell excitation, causing accumul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of medical genetics

دوره 36 11  شماره 

صفحات  -

تاریخ انتشار 1999